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ABSTRACT 

Given a homeomorphism f of the circle with irrational rotation number 

and a descending chain of renormalization intervals Yn of f, we consider for 

each interval the point process obtained by marking the times for the orbit 

of a point in the circle to enter Yn. Assuming the point is randomly cho- 

sen by the unique invariant probability measure of f, we obtain necessary 

and sufficient conditions which guarantee convergence in law of the corre- 

sponding point process and we describe all the limiting processes. These 

conditions are given in terms of the convergent subsequences of the orbit 

of the rotation number of f under the Gauss transformation and under 

a certain realization of its natural extension. We also consider the case 

when the point is randomly chosen according to Lebesgue measure, f be- 

ing a diffeomorphism which is Cl-conjugate to a rotation, and we show 

t h a t  the  same necessary and sufficient condi t ions guaran tee  convergence in 

this  case. 

I n t r o d u c t i o n  

Limit laws of entrance times have been obtained in various contexts such as: 

hyperbolic automorphisms of the torus and Markov chains [Pi], Axiom A diffeo- 

morphisms and shifts of finite type with a HSlder potential [Hi], and piecewise 

expanding maps of the circle [CG] (see also [CC]). The general setting for the 

problem is as follows. Given an ergodic dynamical system (X, B, #, f )  and a set 
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A E B of positive measure, we consider the times k > 0 such that  fk(x) E A, for 

each x E X. These are called the e n t r a n c e  times* of the orbit of x to the set A. 

We define a point process T A on (0, (:X)) by assigning to each x the sum of point 

masses at these entrance times. The problem consists of finding conditions under 

which this process, after rescaling by some constant depending on A, converges 

in law, when #(A) tends to zero. Since the expectation of the first entrance time 

is of the order lip(A), it is natural  to rescale the process by this factor. 

In the case of hyperbolic automorphisms of the torus with Haar measure 

and Axiom A diffeomorphisms with the Bowen-Ruelle measure, the limit of the 

rescaled entrance t ime process is proven to be a Poisson point process of constant 

rate 1, where A is taken in the neighbourhood basis of a point in the manifold, 

for almost every base point (cf. [Pi] for a preliminary result in this direction, and 

[Hi] for the general case). In the case of piecewise expanding maps of the circle 

with an absolutely continuous invariant measure, a Poisson limit law (with rate 

1) is also obtained when A is taken in a sequence of intervals with diverging time 

of self-intersection (cf. [CG]). In all of these cases the property of exponential 

decay of correlations, which is an exponential mixing property, is crucial in order 

to prove this universal behaviour. 

The purpose of this paper is to show that  there is no universal limit law in 

the case of a homeomorphism of the circle with irrational rotation number a and 

with its unique invariant probability measure. Taking the set A in the sequence 

of renormalization intervals Jn of the homeomorphism, we obtain a necessary and 

sufficient condition on a subsequence of the Jn 's  which guarantees convergence of 

the corresponding rescaled entrance time point process. These subsequences are 

shown to be directly related to the convergent subsequences of the orbit of c~ un- 

der the Gauss transformation G and also under a certain realization of the natural  

extension of G. Using this correspondence we deduce that,  for Lebesgue almost 

every rotation number a,  there are an uncountable number of subsequences of 

the renormalization intervals of the homeomorphism which give pairwise differ- 

ent limit laws. The possible limits are either the stat ionary modified renewal 

process with first renewal distribution given by the uniform distribution on the 

unit interval (known as the lattice process); or a non-stationary process with dis- 

* Entrance times are commonly used to denote the times k > 0 for which fk(x) E A 
and fk- l (x)  ti~ A. However, in our case these times will coincide with the present 
definition, when/~(A) is sufficiently small. 
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t r ibut ion of in te rmedia te  renewal t imes given in Figures 1 and 2, for some value 

of the pa r ame te r s  0 E (0, 1] and w E [0, 1). 

We also consider the case of a d i f feomorphism which is CLconjuga te  to an 

irrat ional  ro ta t ion  but  wi th  Lebesgue measure,  and we show tha t  the  same results  

hold (up to scale change) for the convergence of the corresponding entrance t ime  

point process, the la t ter  being rescaled by the inverse of the length of Jn.  

1. P r e l i m i n a r i e s  a n d  s t a t e m e n t s  o f  r e s u l t s  

Let G: [0, 1] --~ [0, 1] be the Gauss  t r ans fo rmat ion  given by G ( a )  = 1 / a  - co (a )  

for a > 0, and G(0) = 0, where a0(a)  = [ l / a ]  is the greates t  integer _< 1 / a .  

We also set a0(0) = cc and make  the conventions tha t  1 /0  = oc and 1 /oc  -- 0. 

Defining a,~ = a n ( a )  = a o ( G n ( a ) )  for all n > 0, we ob ta in  the continued fract ion 

expansion of a ,  
1 

a = [ao, a l , . . . ]  = 
1 

ao + - -  
1 

a l +  - -  

We write Po = po(a )  = O, qo = qo(a)  = 1 and for n _> 1 we let Pn/q,~ = 

p n ( a ) / q n ( a )  = [ao, a l , . . . ,  a n - l ]  denote  the t runca ted  expansion of a of order  n 

in its irreducible form�9 I t  is well-known tha t  

qn+l ---- anqn  + q n - 1  
Pn+l an Pn "[- Pn--1 , 

for n _> 1. The  dis tance of a real number  x to the nearest  integer will be denoted 

by IIxll. We shall also use the so-called double Gauss  t r ans fo rmat ion  F: [0, 1] 2 --* 

[0, 1] 2, which is a real izat ion of the na tu ra l  extension of G (cf. [IN]), defined by 

Note  tha t  for n > 1, 

1 
F(a ,  fl) = ( G ( a ) , a o ( c ~ + 1 3 )  . 

Fn(a ,  ~) = (Gn(a ) ,  [ an- l ,  a n - 2 , .  �9 ao, bo, b l , . �9  . ] ) ,  

where bj --- ao(GJ(13)) for j > 0, and hence the convergent  subsequences of 

Fn(a ,  ~) for n > 0 do not depend on/3.  

Now let f :  S 1 ~ S 1 be an or ienta t ion preserving h o m e o m o r p h i s m  of the 

circle without  periodic points  and let a = a ( f )  E [0, 1) be its i r ra t ional  ro ta t ion  
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number. In what follows we shall omit the dependence on a and write simply 

an(a) = an, pn(a) = pn and qn(a) = qn. 
We fix z E S 1 and define Jn c_ S 1 as the closed interval of endpoints fq~ (z) 

and fq~- l (z)  containing z in its interior. We also define In c Jn to be the 

closed subinterval of endpoints z and fq~ (z). Recall, from the basic properties of 

homeomorphisms of the circle, that  J,~+l C_ Jn, and inside J1 the points fq~(z) 

and fq~-~ (z) lie on opposite sides of z for all n > 1. 

For any subset A c_ S 1, we consider a sequence of maps N(Ak): S 1 --+ N, 

k = 0, 1 , . . . ,  given inductively by N(A ~ -- 0 and 

N(Ak)(x) = min {j  > N(Ak-1)(x): f J (x )  E A } ,  

for all x E S 1 and all k > 1. We call N(A k) (x) the k th e n t r a n c e  t i m e  of x in A. 

Let # be the unique ergodic invariant probability measure for f .  For A = Jn the 

entrance times N~ (k) = Nj(~ ) define the distribution functions 

_< 

We now state our results concerning the limiting behaviour of these distribu- 

tions. 

THEOREM I: For each subsequence a = {n~} of N, the corresponding distribu- 

tion functions F(~ ) converge (pointwise or uniformly) if and only i f  either 

(a) G '~' (a) ---+ O, in which case the limit distribution is the uniform distribution 

on the unit interval: or 

(b) Fro(a , . )  ---+ (O,w) for some 0 > 0 and w < 1, in which case the limit 

distribution is the continuous piecewise linear function F (1) given by Figure 

1. 

1 

O+e),,,, 
l+Oto 

F2)(t) k = 1 

(i+o)~, 1 1+s 
l+Oto l+Ow 

Figure 1 

Ck 

F(2)(t) k > 1 

(1+0)~ 1 l+O 
l+Ow 1-FOw 

Figure 2 
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THEOREM II:  Let a = {ni} be a subsequence of N such that F(~ ) converges 

(pointwise or uniformly). Then for each k > 1 the corresponding sequence of 

distribution functions F(  ~ ) converges uniformly. Furthermore 

(a) I f  G n` (a ) -* 0 then the limit distribution is the distribution of the constant 

random variable X - 1 for all k > 1 ; 

(b) I f  Fn~(a, .) ~ (0, w) for some 0 > 0 and w < 1, then the limit distribution 

is the step function F (k) given by Figure 2, where 

ck - l + 0 c o  + 1+0----~ rain �9 

Remark  A: Recall that  G preserves an ergodic absolutely continuous invariant 

measure on the unit interval. Therefore, for Lebesgue almost every a,  condition 

(a) holds in both  Theorems for s o m e  subsequence a. In other words, the uniform 

distribution occurs as a limit distribution along a subsequence for almost every a. 

Remark  B: Less well-known is the fact that  F preserves an ergodic absolutely 

continuous invariant measure with respect to Lebesgue measure on the unit 

square, whose density is given by 1/((1 + c~ ~)2 log 2) (cf. [IN, MP]). Thus, for 

Lebesgue almost every (a, 3) and every fixed (0, co), there exists a subsequence 

a = {nl} such that  l imF '~ ' (a ,3 )  = (0,~o). However, from the properties of F 

stated at the beginning, we know that  l imI  'n' (a, 3) = l i m r  n~ (a, a) .  This shows 

that  for Lebesgue almost every a,  condition (b) holds in both  Theorems for s o m e  

subsequence a. In other words, unusual distributions such as the ones in Figures 

1 and 2 occur as limit distributions along a subsequence for almost every a. 

Now we interpret our results in terms of point processes. Let 34[0, ee) denote 

the a-finite measures on [0, ec) and denote by 5t the Dirac measure at the point 

t. For each n > 1, we define the point process r,~: S 1 ~ .M[0, oe) by 

r~(x) = ~ ~ (jo)N~)(x), 
k > l  

where x is assumed to be randomly chosen by p. This is the point process of 

successive entrances to J~ (rescaled by p(J~)) .  

THEOREM II I :  For each subsequence a = {hi} of N, the point process of suc- 

cessive entrances to J,~ converges if  and only i f  either 

(a) G ~' (a) ~ 0, in which case the limit is the stationary modified renewal 

process known as the lattice process ; or 
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(b) Fn~(a, .) ~ (O,w) for some 0 > 0 and w < 1, in which case the limit is a 

non-stationary point process injectively parametrised by 0 and w. 

Next we let f be a diffeomorphism of the circle which is CLeonjugate to a 

rotation with irrational rotation number a. In this case the unique invariant 

probability measure # for f is absolutely continuous and has a continuous density 

g(x). We also recall that g(x) > 0 for all x E S 1. Consider the intervals Jn and 

the entrance time functions N (k) 

respect to Lebesgue measure by 

~(k)(t) = A {X E SI: 

as before, and define the distributions with 

for each k > 0, where A denotes Lebesgue measure on S 1 and IJnl means the 

length of J,~. In this context we have the following results. 

THEOREM IV: Let f be Cl-conjugate to the rotation by a and let a = {nl} be 

a subsequence of N. The distribution ~(11) converges (pointwise or uniformly) i f  

and only i f  either 

(a) G n~ (a) ~ 0, in which ease the limit distribution is the uniform distribution 

on the interval [0, 1/g(z)] ; or 

(b) Fn~(a,.) ~ (0, w) for some 0 > 0 and w < 1, in which case the limit 

distribution is r = F 0 )  (g(z)t)  where Fa (1) is given by Figure 1. 

THEOREM V: Let a = {ni} be a subsequence of N such that 4 (1)n~ converges 

(pointwise or uniformly). Then for each k > 1 the corresponding sequence of  

distribution functions ~ ( k ) converges uniformly. Moreover 

(a) I f  G TM (a) --* 0 then the limit distribution is the distribution of  the constant 

random variable X - 1/g(z) for all k > 1; 

(b) I f  Fn' (a ,  ') ---* (O,w) for some 0 > 0 and w < 1, then the limit distribution 

is the step function O(k)(t) = F (k) (g(z) t)  where F (k) is given by Figure 2. 

Remark C: In terms of point processes, we can define the point process T~ of 

successive entrances to J~ (rescaled by [J~[), where the randomness is given by 

a point in the circle chosen according to Lebesgue measure. A similar statement 

to Theorem III can be made for the convergence of T~, where the conditions 

for convergence along a subsequence are the same in this case, and the point 

processes which appear as limits are rescaled by 1/g(z). 
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2. T h e  e n t r a n c e  t i m e  f u n c t i o n s  

Let n > 1 be fixed. Consider the first return map T: Jn ~ Jn given by 

T(x) = 

99 

One can show that  T(x)  = fq,~-i ( x ) i f x  C In and T(x)  = f q " ( x ) i f x  �9 In--1 \{Z} 

(cf. [La]). Now we define the itinerary of a point x �9 Jn to be the sequence 

{r r  where 

So i f T J ( z )  E I ~ ;  Ej(x) 
1 if TJ(x) C In--1 �9 

It  follows that  for all k _> 1 and x E J~ we have 

(1) 
k 

N(k)(x) = ~-~((1 - r + Ej(x)q~) . 
j = l  

LEMMA 1: The intervals {f~(I~)} for i = 0 , . . .  ,qn-1 - 1 together with the inter- 

vals { fJ (I=_ 1)} for j = 0 . . . .  , q ~ -  1 cover the circle. I f  I # J are any two of these 

intervals then either I n J is empty or consists of a single point. In particular, 

~(I n J) = O. 

Proof." First suppose f is the rotation by a. Let 0 < i < qn and 0 < j < q=-i  

satisfy f~ ( In_ l )N  fJ(In)  r O. If i < j then j - i  < qn-1 and there exists x E In 

such that  fJ-~(x) E In - i ,  which contradicts the expression of T. If j < i then 

i - j < qn and so the intersection f i - J ( In_ l )  n In is necessarily z. This shows 

that  the intervals of the first collection have disjoint interiors from the ones in 

the second collection. A similar argument proves that  any two intervals from the 

same collection also have this property. 

Since in this case p is Lebesgue measure, these intervals cover the circle because 

their total  measure is 

which is equal to one due to a simple computat ion using the Lagrange cquality 

q,~Pn-1 - q,~-lP~ = ( - 1 )  n. 

In the general case, let R~ denote the rotation by a and let h be the semi- 

conjugacy between f and R~. Then the first assertion of the Lemma is true, since 
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h is onto. On the other hand, the pre-image of a point under h is either a point 

or a closed interval whose interior is a wandering component of f .  In both  cases, 

the/ t -measure of this pre-image is zero because/t  is non-atomic and its support  is 

the minimal set of f .  Now since the endpoints of the intervals in both  collections 

belong to the set {z, f ( z ) , . . . ,  fq~+q~-l- l (z)}  and this set is mapped bijectively 

by h onto the set {h(z), Rc~(h(z)),.. . ,  Rq~+q~-~-l(h(z))}, we conclude that  if I 

and J are as stated then I N J must have empty interior. | 

As a direct consequence of Lemma 1 we have the following. 

PROPOSITION 2: The first entrance time function is given by 

N(I)(x  ) = ~ q n - I - i  i f x E f i ( I n ) , O ~ i ( q n _ i ;  

( q n - - j  i f x E  f J ( I n - 1 ) \ { f J ( z ) } , O ~ _ j < q n .  

PROPOSITION 3: The distribution function of the first entrance time is given by 

k#(Jn )  i f  k#(fin) ~_ t < (kq- 1)/t(Jn) , 
0 <_ k < q~_~; 

F(X)(t) --- ( k - q n - 1 ) p ( I n - 1 )  -bqn-xP(Jn) if k/t(Jn) ~_ t ( ( k+  1)/t(Jn), 

qn-1 ~_ k ~ qn; 

and FO)(t) = 0 if  t < 0 and F(1)(t) = 1 i f  t >_ qn #(jn).  

However, describing the distribution functions of the subsequent entrance times 

requires a different argument. 

PROPOSITION 4: For k > 1 the distribution function of the k-th entrance time 

is given by 

(2) F(k)(t) = qn-1 #(In A T -k in )  + qn/t(In-x N T-k in )  

if qn-1/t(Jn) ~_ t < qn/t(Jn); F(k)(t) = 0 if t < qn- l#(Jn);  and F(k)(t) = 1 if  

t > qn/t(J ). 

Proof  We note that  the difference 

D(k)(x) = N ( k ) ( x ) -  N(k-1)(x ) 

is either q . -1  or qn for k > 1, since these are the return times on J~. Therefore 

F(k)(t) is a step function and it is clear that  F(nk)(t) = 0 if t < qn-1 #(Jn) and 
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F(k)(t) = 1 if t _> qn #(Jn)- Hence it remains to compute the measure of the set 

E of points x E S 1 where D(k)(x) = qn-1. By (1) the latter equality holds for 

x E Jn if and only if Tk(x)  C IN. Thus E M Jn = T - k i n .  

Now let x be a point outside Jn. Then from Lemma 1 we know that  either 

x c f~(In) f o r s o m e i  : 1 , . . . , q n _ l - 1  o r x  E f J ( In-1)  f o r s o m e j  = 1 , . . . , q n - 1 ,  

except for a set of measure zero. If x E fi(I,~) then by Proposition 2 we have 

D(k)(x) = D(k -1 ) ( fq - - { ( x ) ) .  

Therefore in this case, using (1) we conclude that  D(k)(x) -=- qn-1 if and only if 

fa~-l-~(x)  e T- (k-1) In .  Since f q " - l - i ( f i ( I ~ ) )  = T(In)  we obtain 

# (E  D f i ( In) )  = #(T- (k -1) I~  A T(In))  = #(T-kIN n In ) ,  

where we have used the fact that  both  T and f preserve #. 

In the case x E f J ( I ~ - l )  a similar argument shows that  

#(E  N fJ(In_l) ) = p(T- (k -1 ) /~  M T ( I ~ - I ) )  = p ( T - k I n  M I n - i ) .  

Putt ing these facts together we finally obtain 

q ~ - l - - 1  q ~ - - I  

#(E) ---- #(E A Jn) --b ~ ~(E N :i(In) ) q- Z #(E N fJ(Xn-x)) 
i = 1  j=l 

= . ( T - k i n )  + (q~-, - 1) #(IN A T - k i n )  + (qn - 1) . ( I n - 1  A T-kIN)  

= qn-1 p(In M T - k i n )  + q~ p(In-1 M T - k i n ) .  I 

Similarly to Proposition 3, the first result below is a direct consequence of 

Lemma 1, whereas the second is a consequence of the proof of Proposition 4. 

PROPOSITION 5: The distribution function with respect to Lebesgue measure of 

the first entrance time is given by 

~ i j  _ If ( n)l if k IJnl < t < (k + t)lJ~l, 
O(1)(t ) = i=0 0 < k < qn--1; 

qr~ - l - -1  

IfJ(In-1)l + ~ If(J~)l  if k IJnl __ t < (k + i)lJnl, 
J=q~-I i----0 qn-1 _< k < qn; 

and O(1)(t) = 0 if t < 0 and O(1)(t) = 1 if t >_ qn [J~[. 
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PROPOSITION 6: For k > 1 the distribution function with respect to Lebesgue 

measure of  the k-th entrance time is given by 

qn--I --1 q,~--i 

(a) =  (s (in n T-%))  + Z n T-kIn)) 
i=0 j = 0  

qn ]Jn[; r = 0 if  t < qn-1 [J~[; and r = 1 if  if  qn-l lJnl  <<_ t < 

t >_ qnl&l.  

Proof: We use the same notation introduced in the proof of Proposition 4. Here 

we also need to compute the Lebesgue measure of the set E of the points x E S 1 

such that D(k)(x) = qn-1. From the arguments used in the proof of Proposition 

4 and the fact that  T = fqn-1 on In, and T =- fq~ on In - i ,  we conclude that  

E A f i ( In )  = f--(q~_~--i)(T-(k-1)in N T(I~))  = f i ( T - k I n  A In) 

for 0 < i < q~_ 1, and 

E N i f ( I n - l )  = f-(q~-J)(T-(k-1)I ,~ N T(In-1) )  = i f ( T - k i n  n I~-1) 

for 0 _< j < qn. Now the proof of this Proposition follows by noting that ,  except 

for a finite number of points, every point in S 1 belongs to exactly one of the 

intervals of the collection {fi( i~) ,  f J ( I~ - l ) }  for 0 _< i < qn-1 and 0 _< j < an- 
| 

3. P r o o f s  o f  T h e o r e m s  I and  II 

Let Ln(t) be the continuous piecewise linear approximation of F(~D(t) defined by 

Ln(t) = 0 if t < 0; Ln(t) = t if 0 < t < q,~-i #(J~); 

L~(t) - #(In--l) (t -- qn--1 #(Jn))  + qn-1 #(a,~) 
,(Jn) 

(4) #(I,~-1) 

if q,~-I # ( J . )  -< t < q,~ #(J,~); and Ln(t) = 1 if t > q,~ #(Jn).  

LEMMA 7: The sequence F(1)(t) converges pointwise (uniformly) i f  and only i f  

L,~ ( t ) converges pointwise (uniformly). 

Proof: This is clear from the fact that 0 _< L,,(t) - FO)(t)  <_ #(Jn) for all t. 

| 
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LEMMA 8: Let  {n~} be a subsequence o f  N. Then  q~, Iz(J~,) converges to 1 i f  

and only i f  lim a~, = co. 

Proof: Let 6,~ denote  Iq,~ a - p ~ ] .  A basic result of continued fraction theory 

asserts tha t  

(5) 1 1 
< 6 n  < - -  

qn + qn+l q,~+l 

Since the semi-conjugacy between f and the rota t ion by a carries # to the 

Lebesgue measure,  we know tha t  

u ( & )  = u(I ) + = + a n - 1 ,  

which combined with L e m m a  1 yields 

(6) qn # (Jn)  = 1 + (qn -- qn--1) ~n. 

Now from (5) we note tha t  

1 
(7) 0 < (qn--qn--1)Sn < qn < - - .  

qn+l an 

In particular,  if lira an, = co then q~ t t ( J  m ) converges to  1. 

In order to prove the converse we argue by contradict ion.  Let mk be a subse- 

quence of ni such tha t  lim amk = a < co. By (5) we always have 

1 q~-i  1 1 
an a n - 1  

( S )  (qn -- qn-1)  eSn > > 
qn+l 2 + an 1 +  qn 

Therefore along the sequence rnk the first member  of (8) cannot  go to zero unless 

a.~k_l = 1 for all sufficiently large k. The  same argument  repeated inductively 

shows that  a.~ k_e = 1 for all sufficiently large k (depending on g). In part icular  

am~- i  = am~-2 = a.~k-3 = 1 for all sufficiently large k. Since q./q,~+l = 

[an, a n -  1 ~ �9 �9 �9 ~ a 0 ]  w e  have 

qmk 1 
- 1 +  1 ' 

q , ~ - t  1 + - -  
1 +/3k 

where 0 < flk < 1, and also 

qm k -- 1 

qmk-2 

1 
- 1 + ~  

1 +f l~  " 
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These  two rat ios lie between ~ and 2. Therefore we obta in  

1 (  q m k + l )  
1 qm~-i  > 1 + , 

q ,~  9 qm~ 

which is incompat ib le  wi th  (8). i l  

Proof of Theorem I: By L e m m a  7, pointwise convergence of F, (1)r~ is equivalent n l  \ v ]  

to pointwise convergence of L,~, (t). If  L=, (t) converges pointwise then  in part ic-  

ular  l i m n m ( 1  ) = b < 1. For each n > 0 the interval A,~ = [qn-l#(J,),q,~#(J~)] 

contains 1 and L~(t) is affine on An with slope given by the rat io  

~(,/n--1) ~n--I 
(9) # ( Jn )  - 5~ +5n_1  ' 

which lies between 1 and 1. Therefore if b = 1 then q~ # ( J m )  converges to 1, 

and by L e m m a  8 we have l i m a , ,  = o0, i.e. G ~ ' ( a )  ~ 0. However,  if b < 1 then  

0-5)1 for all sufficiently large i. This  shows tha t  the ra t io  An, D [ 1 , 1 +  2 J 

5n 1 
- = 

(10) ~n--1 1 
an + 

1 
an + l -]- - -  

o o ,  

converges along the subsequence a to some 0 > 0, and it also shows tha t  the 

intervals A m converge to an interval containing [1, 1 + 12~L~]. Therefore  the ra t io  

qn,-1/q~ = [an~-l,  a m - 2 , . . . ,  ao] of their  endpoints  converges to some w < 1, 

and this happens  if and only if the second coordinate  of p~q,i (Og, ") converges to w. 

In order to prove the converse, we let us first deal with the case G ~' (a )  --~ 0. 

Let  U(t) denote  the  uniform dis t r ibut ion on [0, 1]. Then  we see tha t  

(11) 0 <_ U ( t ) -  L~(t) _< 1 - L ~ ( 1 ) ,  

for all t and n > 0. F rom L e m m a  8 we know tha t  qm P ( J ~ )  converges to 1, and 

so f rom the expression of L~(1) in (4) together  wi th  (9) and (10) we deduce tha t  

l im L,~ (1) = 1. Therefore  by (11), L m (t) converges uniformly to U(t), which sets 

the converse in this case and also proves (a). 

We now deal wi th  the case Fro(a ,  .) ~ (O,w) for some 0 > 0 and w < 1, or 

equivalently 

(12) l im qm-1 - w lim 5~ - O. 
qm ' 5nl --1 
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It is clear from (9) that the slope of L~,(t) on A,~, converges to (1 + 8) -1. There- 

fore in order to show that the sequence Ln{ (t) converges uniformly it suffices to 

prove that the right hand endpoint of An{ has a limit. By (6) this is equivalent 

to showing that sn~ has a limit, where s,~ = (qn - q n - J  6.. However, by (7) s,~, is 

a bounded sequence, and from the first inequality in (8) it is also bounded away 

from zero for sufficiently large i. Therefore s,~, converges if and only if the ratio 

i + s,~, qn, (6,~, + 5 . , - i )  

Sn, (qn, --qn,-l) 6n, 

converges, and this is clear from (12). Now a simple computation shows that  

(1 -w)8 
lim snl - 

l + S w  ' 

which implies 

(1 + 8) 
(13) lim qn , - l# ( Jn , )  - 1 + 8w 

and 

I+8 
(14) lim qn. #(J,~,) - 1 + 8w 

This completes the proof of the converse and also proves (b). | 

Proof of Theorem II: Let q,~-I #(Jn) _< t < q~ #(Jn).  Then by Proposition 4 we 

have 

(15) F(k)(t) : q.~(j.) [q~-l. ~(I. nT-kI~) ,(1.-_1nT-~l.)1 
L  (Jn) +  (Jn) ] " 

In the case Gnu(a) --* 0 we know from the proof of Theorem I that 

limqn, tt(Jn,) : 1. Since the expression between brackets in (15) is always 

bounded by #(In)/#(Jn) and this ratio converges to zero along the subsequence 

a in this case, we have proved (a). 

Now we deal with the case F~'(a ,  .) --* (0,w) for some 8 > 0 and w < 1. Let h 

be the semi-conjugacy between f and the corresponding rotation R~. Since h is 

an isomorphism between the ergodic systems (],  tt) and (R~, A), where A denotes 

Lebesgue measure, we have 

#( InAT-k I~ )  A(hI~NR[k(hI~) )  
#(Jn) l (hJn)  ' 
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and a similar equality holds for the other ratio in (15) involving I~-1. Therefore, 

in order to prove (b), we may assume that f is the rotation by c~ and p is Lebesgue 

measure. 

Let I be the unit interval and let A: J~ --* I be the unique affine orientation 

preserving map carrying Jn onto I. Consider the conjugate map A TA -1 defined 

on I. Through the identification of the points 0 and 1 via the canonical projection 

exp : R --* S 1 -- R/Z, this conjugate map becomes a new rotation T, on the circle 

(the nthrenormalization of R~). It can be shown that the rotation number of T. 

is p -- [an+l,an+l, an+2,...] (cf. [La, dF]). Writing A = exp oA(In) we see that 

A(A) -- p and 

(16) #( I~  n T - k i n )  = A(A N T . - k A ) .  
, ( J ~ )  ~, 

Let w denote an endpoint of A and let d denote the intrinsic distance on the 

circle. Then 

d(w,T~-k(w)) = II-kpll = Ilkpll. 

If k > 1 is such that IIkpll > p then A and T,--k(A) are disjoint. Alternatively, if 

I] k Pll < P then )~(A N T,-kA) is equal to 

A( A ) - d (w,  TZ-k(w)  ) = p - Ilk fill, 

In both cases, we obtain 

(17) A(A N T,--kA) = p - rain {p, [[kpl[ } . 

We now note that along the subsequence a the corresponding rotation numbers 

p converge to ~ = 0/(1 +0).  Therefore, letting n ~ 0o along a in (15) and taking 

into account the expressions (13), (14), (16) and (17) we deduce that 

lim F(k)(t) -- ll++00w [ w (~ - min {% IIk?ll}) + 7 - ( ?  - min {~/, Ilk ~/11})] 

for all ~ < t < ~ .  This completes the proof of (b). | l + 0 w  - 
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4. P r o o f  o f  T h e o r e m  III 

In the proof  of Theo rem I I I ,  we will consider the r a n d o m  variables 

b k)(x) = 

and their  joint  dis t r ibut ions 

(18) F (k'  ..... ks)( t , , .  . . , t s )  

#(Jn)  (N(k)(X) -- N(nk-1)(X)) , 

= # { x E S I :  / ) ( k ' ) ( x ) _ < t i ,  i = l  . . . .  , s } ,  

107 

where 1 < kl < " "  < ks. We will also need the following Lemma ,  which can be 

proved by a renormal iza t ion  a rgument  similar to the one used to obta in  equali ty 

(16). 

LEMMA 9: Let  a -- {hi} be a subsequence o f  N such that  G n ' ( a )  ---+ 0 with 

0 > O. Then  for every 1 < kl < . . .  < ks we have 

l im # ( I ' ~ C ~ T - k l I ~ n ' " C l T - k ' I n )  = A ( A o n T o - k l A o n . . . C ~ T o - k S A o )  

where A0 = [0, 0 / (1  + 0)] C_ II~/Z and To is the rotation by 0/(1 + 0). 

Proo f  o f  Theorem III: We note tha t  convergence in law of the point  process r ,  

is equivalent to convergence in law of the joint dis t r ibut ions given by (18), for 

every choice of indices 1 _< k 1 < ' ' "  "( k s (e l .  [Ne], page 284). Since in our case 

the corresponding probabi l i ty  measures  in IR s defined by these joint dis t r ibut ions 

are suppor ted  in the cube [0, qn P ( J n ) ]  s C_ [0, 2] s for all n, convergence in law of 

these dis t r ibut ions is equivalent to their  pointwise convergence. In par t icular ,  if 

7n converges in law along the subsequence ~ then the individual  dis t r ibut ions of 

/)(k) converge pointwise. Therefore,  by Theorems  I and II,  ei ther G n~ (a)  ---+ 0 or 

F '~ ' (a ,  .) --+ (O,w) for some 0 > 0 and w < 1. 

Now we prove the converse. Recall t h a t / ) ! ) )  for k _> 2 assumes only the values 

qn-1 #(Jn)  and q, p ( Jn) .  Therefore  in order to prove convergence of the joint 

dis t r ibut ions in (18) along a,  it suffices to de termine  whether  the limit of 

(19) F(k,  ..... ks) ( t ,  qn_ l  # (  Jn) ,  . . . , qn -1  # (  Jn)  ) 

exists along a ,  for every t > O. In fact, if kl > 1 it suffices to prove the existence 

of the limit of (19) along a for t = q , - 1  #(gn) .  

Let  us first deal wi th  the case kl = 1. Consider the following condit ions 

(20) D ( ' ) ( x )  _< t ,  b(~k2)(x) = qn- ,  t t (Jn) . . . .  , D(k ' ) (x )  = q,~-l#(J,~) , 



108 Z. COELHO AND E. DE FARIA Isr. J. Math. 

for a fixed t > 0 and let r # (Jn)  -< t < (r + 1) #(Jn)  for some integer r > 0. There 

are three cases to consider: 0 < r < qn-1, qn-1 _< r < qn and r > q,~. Using 

Lemma 1 and Proposi t ion 2 we deduce the following. In the first case, a point  x 

satisfies conditions (20) if and only if it belongs to 

O f q " - l - i ( T - k 2 I n  A . . .  [-I T - k ' I , )  . 
i=0 

In the second case, x satisfies (20) if and only if it belongs to 

q,*-I --1 

U u 0 F -J(In-1nT- 21 nnT- 'In) 
i=0 J=q,~- I 

Finally, in the third case, every x satisfies the first inequality in (20) and we are 

reduced to the case kl > 1, which will be dealt with below. 

Therefore, in the case 0 _< r < qn-1 we obtain  

F(1,k2 ..... k,) (t, q~- i  #(  J~), . . . ,qn-1 #(  Jn) ) = 

(r + 1) # ( Jn)  #(T-k~I~  e l . . .  N T -k* I~)  

If  we let n --* oo along a subsequence a satisfying either (a) or (b) in the s ta tement  

of Theorem III ,  we deduce from Lemma 9 tha t  the last expression converges to 

t ,~(To-k2Ao n... n T o - k ' A o ) .  

In the case qn-1 < r < q ,  we have 

F(nl,k2 ..... k.) (t, qn-a I~( Jn), . . . , qn--, #( Jn) ) 

= q , -1  # ( T - k ' I ~  A ' "  Cl T -k* I~)  

+ (r -- an-1 -t- 1) . ( I n _  1 0 T-k2 I~  n . . .  n T -k* I~)  

= (r + 1) p(J~)  #(T -k2 I~  Cl. . .  Cl T -k* I~)  
, ( J n )  

- (r  - q n - 1  + 1) . ( J n )  #(/~ Cl T-k'I~ el.. .  fq T-k'I~) 

Again by Lemma 9, as n --* oo along a,  the above expression converges to 

t , ~ (To-k 'Aon  .. . n T o - k * A o )  - (t (1 + O ) w ]  )~(AonTo_k~Aon ."  . n T o _ k . A o  ) 
l + O w  j 
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Now suppose kl > 1. Here we need to determine whether the limit of (19) 

exists along a for t = q~-i #(J~). Applying Lemma 1 and Proposition 2 once 

more, we deduce that  a point x satisfies 

b (k ' ) ( x )  = qn-- l#(Jn) ,  . . . ,  D(k')(X) = qn--1 #(J,~),  

if and only if it belongs to 

q,~-1-1 q,~-I 

U f q ' - ' - i ( T - k l I ~ n ' " n T - k ' I ~ )  u U f q ' - ~ ( I ~ - ~ n T - k l I ~ n n T - k ' I ~ )  �9 
i----0 J=q~-I 

Therefore we obtain 

r ( ~  ..... k,) (qn_l I~( Jn ), . . . , qn- ,  #(Jn))  

= q,~_l t t (T-k ' In  n . . .  O T - k ' I n )  

+ (q,~ - an- l )  #(I~-1 nT-k~In N . . .  n T - k ~  

As before, using Lemma 9 we conclude that the limit of the above expression as 

n --* c~ along a equals 

1 + 0 [)~(To_k~AoN. " .nTo_k~ ) _ ( l - w )  A ( A o n T o - k ' A o n  .. . n T o - k ' A o ) ]  
l + O w  

Therefore, we have proved that all joint distributions converge along a subse- 

quence a, which satisfies either (a) or (b) in the statement of Theorem III. In 

fact, with the given expressions, it is possible to write explicit formulae for all 

limit joint distributions. We note that  when 0 = 0 the limit joint distributions 

are a product of the individual limit distributions. Therefore the limiting process 

is independent in this case. | 

5. P r o o f s  o f  T h e o r e m s  IV  a n d  V 

Throughout this section, let f be a diffeomorphism which is Cl-conjugate to a 

rotation with irrational rotation number a. Let A~ (t) be the continuous piecewise 

linear function defined by An(t) = 0 if t < 0; An(t) = (p (Jn) / I Jn l ) t  if 0 _< t < 

q -i IJ l; 

A , , ( t ) -  ]A(In-1) 

(21) IJnl 
~ ( I n - 1 )  

if qn-I IJnl <_ t < qn IJnl; and An(t) = 1 if t _> q,~ [J,~l. 

- -  ( t  -- q n - 1  IJnl) T q n - 1  # ( J n )  
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LEMMA 10: The sequence (I) (1) (t) converges pointwise (uniformly) if and only if 
A,~(t) converges pointwise (uniformly). 

Proo~ Let On(t) denote the difference [(I)(1)(t)-A,~(t)[. I f t  is such that  k [J~[ _< 

t < (k + 1)[Jn[ for some 0 _< k < q,~-l, then 

~=~o t,(Jn) t on(t) = If~(Jn)l-IJnl 

< 

II~,~(t, ")llco +] 

k 

(k + 1) E Dff(x) dx 
i = 0  

1 f j  
,-DT.) (9(x) + ~(t,x)) ex 

n 

1 (k+l ) l&l  ' 

t 

(k + X)lJn I 

t 

(k+ e)l&l 

k D ~ 1 n--1 where ~,~(t,x) = (1/(k + 1)) }--i-i=0 f (x) - g(x). Since ( / n )  ~-~i=o Dfi(x) 
converges uniformly to g(x) (cf. [He], Proposition IV.5.1.2) we conclude that 

II~n(t, ")ll converges uniformly to zero for 0 < t < an-1 IJnl and hence On(t) also 

converges uniformly to zero on this interval. However, if t satisfies k IJ,  I _< t < 

(k + 1)[Jn I for some q,-1 _< k < q,, then 

On(t) < 

< 

k q ~ - l - 1  
#(In- l )  

~'~lf(I, ,-~)l  t + y ~  
~=o I&l ~=o 

#(In- l )  (k + 1) Dff(x)  dx 
n--1 *~ 

I_fi~)flii 1 q'~-~.o 1 + - Dff(x) dx - 1 
q n - 1  .= 

[fiU~)[ - qn-1 ~(In) 

t 

(k + 1)]J,~ I 

and by a similar argument to the one used above we conclude that  On(t) also 

converges uniformly to zero in this case. | 

Proof of Theorem IV: Let L~(t) be the function introduced in (4). We note 

that  h,~(t) -- Ln(t#(Jn)/IJn]). Since the density g(x) of # is a continuous 

function, we know that the ratio #(Jn)/IJ~l converges to g(z). Consequently, if 

L~,(t) converges to some Fo(t), then A,~,(t) converges to F~(g(z) t). Therefore 

Theorem IV follows from Lemma 10 and Theorem I. | 
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Proof of Theorem V: Let k > 1 be fixed and consider the difference 

IJnl " 

This Theorem will follow from Theorem II  if we show that  k~ (t) converges uni- 

formly to zero. It  suffices to consider qn-1 [Jnl -< t < q,~ ]J~], since r vanishes 

outside this interval. Comparing the last two summands in (2) and (3) we have 

q~ml 

[ ~ ~(fJ(In_, n T - k I . ) ) -  q. ~(I.-1 nT-kIn) 
j=O 

q.--1 #(In-1  n T - k i n )  
1 1 E D f ' ( x )  d x -  

1 fll (g(x) + rln(x)) dx - #(In-1 C'l T - k i n )  

q~ II~llco/~(In--1 N T-kI,~) <__ qn II~-,I II~llco, 

where rl~(x) = (1/qn) ~ j = 0  D f J ( x )  - g(x). Since qn IZn_ll is a bounded se- 

quence and Ilnn Ilco converges to zero, the above difference also converges to zero. 

The same argument implies that  the difference between the first summands of 

(2) and (3) converges to zero. This completes the proof of the Theorem. | 
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